Angehängte Matrix - Was ist das, Definition und Konzept

Eine adjungierte Matrix ist eine lineare Transformation der ursprünglichen Matrix durch die Determinante von Minor und ihr Vorzeichen und wird hauptsächlich verwendet, um die inverse Matrix zu erhalten.

Mit anderen Worten, eine adjungierte Matrix ist das Ergebnis der Änderung des Vorzeichens der Determinante jedes der Nebenwerte der ursprünglichen Matrix als Funktion der Position des Nebenwerts innerhalb der Matrix.

Die adjungierte Matrix einer Matrix W es wird als Adj (W) dargestellt.

Die Reihenfolge der Originalmatrix und der angrenzenden Matrix stimmen überein, d. h. die angrenzende Matrix hat die gleiche Anzahl von Spalten und Zeilen wie die Originalmatrix.

Empfohlene Artikel: Hauptdiagonale, Matrixoperationen, quadratische Matrix.

Gegeben eine Matrix W jeder Ordnung n definieren wir die Elemente der Zeile i und die Elemente der Spalte j von W wie wij.

Angehängte Matrixformel

Die Matrix adjungiert der Matrix W wird bezogen von:

In Matrizen der Ordnung 2, Wij ist das Element w, das Zeile i und Spalte j entspricht. Also, det (Wij) ist Element w von Zeile i und Spalte j.

In Matrizen der Ordnung größer oder gleich 3 gilt Wij ist die kleinste, die durch Eliminieren von Zeile i und Spalte j aus der Matrix erhalten wird W. Also, det (Wij) ist die Determinante des kleinsten Wij.

Es ist wichtig, den Vorzeichenwechsel zu berücksichtigen, den wir anwenden müssen, wenn die Summe der Zeilen und Spalten, mit denen wir arbeiten, eine ungerade Zahl ergibt. Falls sie eine gerade Zahl hinzufügen, wird das negative Vorzeichen einen neutralen Effekt auf die kleinere haben.

Anwendungen

Die adjungierte Matrix wird angewendet, um die inverse Matrix einer Matrix mit einer Determinante ungleich Null (0) zu erhalten. Um die inverse Matrix zu erhalten, müssen wir also verlangen, dass die Matrix quadratisch und invertierbar ist, d. h., dass es sich um eine reguläre Matrix handelt. Stattdessen müssen wir zur Berechnung der adjungierten Matrix nur die Nebenwerte der Matrix finden.

Theoretisches Beispiel

Ordnung 2 Matrix

  1. Wir ersetzen die Elemente des Arrays in der obigen Formel.

Matrix der Ordnung 3

  1. Wir ersetzen die Elemente des Arrays in der obigen Formel.
  2. Wir berechnen die Determinante jedes Minor.
Identitätsmatrixtransponierte Matrix

Beliebte Beiträge

Von Kryptowährungen zu Fiat

Um den außergewöhnlichen fiskalischen Anstrengungen, die die Pandemie notwendig gemacht hat, gerecht zu werden, haben viele Regierungen es für notwendig erachtet, die Banknotendruckmaschine mehr als normal zu betreiben. Da die Mobilisierung der Reserven entweder nicht bequem war oder nicht ausreichte, wurde ökonomische Orthodoxie mehr gelesen…