Eigenschaften der Addition - Was ist das, Definition und Konzept

Die Eigenschaften der Summe sind die Eigenschaften oder Regeln, die bei der Durchführung dieser Operation immer erfüllt sind.

Die Addition ist eine der Grundoperationen der Arithmetik und besteht darin, zwei oder mehr Zahlen zu einer zu verbinden, die ihre Größen gruppiert.

Es sollte daran erinnert werden, dass die Arithmetik der Zweig der Mathematik ist, der Zahlen und die grundlegenden Operationen untersucht, die mit ihnen durchgeführt werden können.

Als nächstes werden wir die Eigenschaften der Addition detailliert beschreiben.

Kommutativgesetz

Die Kommutativeigenschaft sagt uns, dass die Reihenfolge der Addenden (der Zahlen, die addiert werden) das Ergebnis nicht ändert. Formal können wir es wie folgt zusammenfassen:

a + b = b + a

Einfach, um ein Beispiel zu sehen, 3 + 5 = 5 + 3 = 8 = 11. Dies gilt also auch für Operationen mit mehr als zwei Summanden: 9 + 7 + 14 = 9 + 14 + 7 = 30

Assoziatives Eigentum

Die assoziative Eigenschaft besteht darin, dass sich das Ergebnis einer Summe nicht ändert, wenn einige der Summanden durch die Summe dieser ersetzt werden. Das heißt, es ist wahr:

a + b + c = a + d

d = b + c

Wenn wir zum Beispiel 14 + 15 + 6 addieren, ist es dasselbe, als ob wir 14 plus 21 addieren (15 + 6)

14+15+6=14+21=35

Dissoziative Eigenschaft

Die dissoziative Eigenschaft geht vom gleichen Prinzip aus wie die assoziative Eigenschaft, da sie das Gegenteil ist. Wenn wir also einen der Summanden in zwei andere Zahlen zerlegen, ist das Ergebnis dasselbe. Das heißt, es ist wahr:

a + b = a + (c + d)

b = c + d

Um es in einem Beispiel zu sehen, wenn wir 20 plus 14 addieren, ist das Ergebnis das gleiche wie wenn wir 20 plus 9 und plus 5 addieren:

20+14=20+9+5=34

Verteilungseigenschaft

Die Verteilungseigenschaft (die eigentlich eine Multiplikationseigenschaft ist, wenn sie auf eine Addition oder Subtraktion angewendet wird) sagt uns, dass wir, wenn wir das Ergebnis einer Summe mit einer Zahl x multiplizieren, dasselbe Ergebnis erhalten, als ob wir jeden der Summanden mit . multiplizieren würden x und dann hinzufügen. Das heißt, es ist wahr:

(a + b) x = (ax) + (bx)

Um es an einem Beispiel zu sehen:

(18 + 2) x9 = (18 × 9) + (2 × 9)

20×9=162+18

180=180

Andere Eigenschaften

Eine weitere zu berücksichtigende Eigenschaft ist, dass jede addierte Zahl plus Null die gleiche Zahl ergibt, dh Null ist ein neutrales Element. Wir können dies wie folgt zusammenfassen:

a + 0 = a

Beispiel: 7 + 0 = 7

Ebenso, wenn wir eine Zahl durch eine andere addieren, die den gleichen absoluten Wert hat, aber das entgegengesetzte Vorzeichen (also das Gegenteil) hat, ist das Ergebnis Null.

a-a = 0

Beispiel: 34 + (- 34) = 34-34 = 0

Beliebte Beiträge

Sie möchten online einen Privatkredit beantragen?

Feiertage sind nicht nur eine ausgezeichnete Zeit zum Abschalten, sondern auch eine Zeit des Ausgebens und in vielen Fällen übermäßiger Ausgaben. Dies führt dazu, dass viele Familien auf einen Privatkredit zurückgreifen müssen, um diese abbezahlen zu können oder der Rückkehr in die Schule etwas entspannter begegnen zu können. Nach den neuestenLesen Sie mehr…

Wie kann Managementsoftware einem KMU helfen?

Was ist eine ERP-Software? Eine Managementsoftware ist ein Werkzeug zur Steuerung und Organisation der Produktion und im Allgemeinen aller Aktivitäten eines Unternehmens oder Unternehmens. Es stimmt zwar, dass die landläufige Meinung besagt, dass diese Art von Tools nur für große Unternehmen geeignet sind, aber das stimmt nicht. HayWeiterlesen…